
# Low estimate of R<sub>0</sub> for FMDV from surveillance data in endemic settings

Aldo Dekker and Thomas Hagenaars



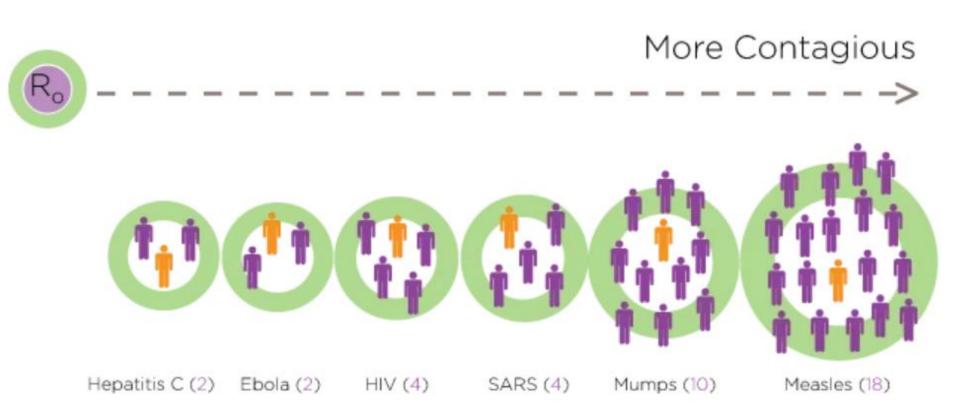


## Outline: Is FMDV "highly" contagious

- Comparison of R<sub>0</sub> of various diseases
- Results animal experiments with FMDV
- Calculate R<sub>0</sub> from prevalence
- Results literature search
- Conclusion






## Reproduction ratio

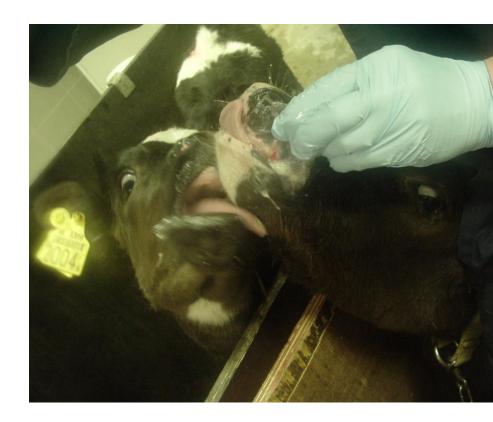
- $All R_0$  = Average number of new infection per average infectious individual during its full infectious period in a fully susceptible population
- If R<sub>0</sub> <1 only small outbreaks occur
- If  $R_0 = 4$  and 75% of the population is protected by vaccination then effective  $R_e = 1$
- 75% protection by vaccination is sufficient (OIE standard)
  so R₀ is most likely <4</li>





# Higher $R_0 \rightarrow$ more contagious




R<sub>0</sub> characteristic of infectious agent and the interaction with the environment

### FMDV transmission studies non-vaccinated animals

| Species | Contact                  | R <sub>0</sub> (95% CI) | Referentie                 |  |  |
|---------|--------------------------|-------------------------|----------------------------|--|--|
| Porcine | Within pen               | ∞ (0.67-∞)              | Eblé et al. 2004           |  |  |
| Porcine | Within pen               | ∞ (1.2-∞)               | Orsel et al. 2007a         |  |  |
| Porcine | Within pen               | ∞ (1.3-∞)               | Orsel et al. 2007a         |  |  |
| Porcine | Within pen               | ∞ (2.35-∞)              | Eblé et al. 2008           |  |  |
| Porcine | Within pen               | 668 (0-∞)               | Fukai et al. 2011          |  |  |
| Porcine | Between pen (0 cm)       | 1.10 (0.34-2.56)        | van Roermund et al. 2010   |  |  |
| Porcine | Between pen (40 - 70 cm) | 0.0 (0.0-0.08)          | van Roermund et al. 2010   |  |  |
| Bovine  | Within pen               | 2.5 (1.1 - 52)          | Orsel et al. 2005          |  |  |
| Bovine  | Within pen               | ∞ (1.3-∞)               | Orsel et al. 2007b         |  |  |
| Bovine  | Within pen               | ∞ (1.3-∞)               | Bravo de Rueda et al. 2015 |  |  |
| Bovine  | Between pen              | 0 (0 - 1.4)             | Bouma et al. 2004          |  |  |
| Bovine  | Indirect by environment  | 1.9 (1.0 - 3.8)         | Bravo de Rueda et al. 2015 |  |  |
| Ovine   | Within pen               | 1.1 (0.3 - 3.3)         | Orsel et al. 2007c         |  |  |
| Ovine   | Within pen               | 1.1 (0.29 - 3.8)        | Eble et al. 2015           |  |  |

### Bouma et al. 2004

- Between pen transmission study
- No transmission
- Calf with lesions can have contact
- No transmission by air!







## Conclusion animal experiments

- High reproduction ratio in cattle and pigs in direct contact
- Extremely strong reduction of R<sub>0</sub> by separation





## Estimation of reproduction ratio from prevalence

- $R_0$  = Average number of new infection per average infectious individual during its full infectious period in a **fully susceptible** population
- Assumptions
  - Population in a country is freely mixing
  - ullet The effective reproduction ratio in the endemic state is 1
  - FMD circulates only between non-infected animals
    - $R_e = (1 prevalence) \times R_0 = 1$  $\Rightarrow R_0 = 1/(1 - prevalence)$





#### Data search

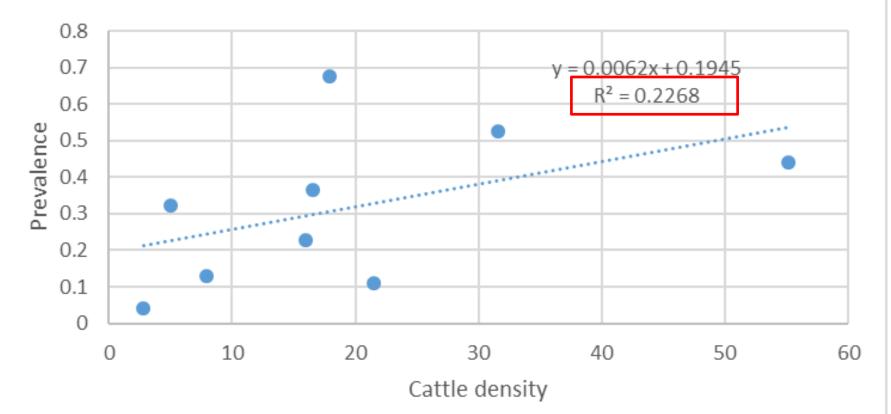
- Published articles with FMDV NSP antibody prevalence
- EuFMD and GFRA report/presentations with NSP prevalence
- FAOSTAT data on cattle density



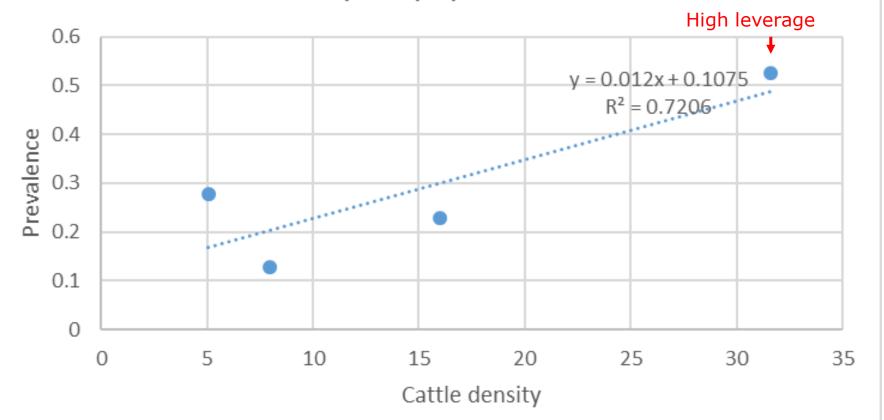


## Limited number of studies found

| country                 | species         | vaccination      | cattle<br>density<br>(per km²) | random    | prevalence | $R_0$ |
|-------------------------|-----------------|------------------|--------------------------------|-----------|------------|-------|
| Eritrea                 | cattle          | no               | 17.9                           | no        | 67%        | 3.1   |
| Eritrea (central part)  | cattle          | no               | 16.0                           | yes       | 23%        | 1.3   |
| Mongolia (Dornod)       | gazelle         | no               | 2.8                            | yes       | 12%        | 1.1   |
| Mongolia (Dornod)       | sheep           | yes              | 2.8                            | no        | 1%         | 1.0   |
| Mongolia (Dornod)       | goats           | yes              | 2.8                            | no        | 1%         | 1.0   |
| Mongolia (Dornod)       | Bactrian camels | yes              | 2.8                            | no        | 1%         | 1.0   |
| Mongolia (Dornod)       | cattle          | yes              | 2.8                            | no        | 5%         | 1.1   |
| Nigeria (Kano/Sokoto)   | dromedaries     | no               | 21.5                           | slaughter | 11%        | 1.1   |
| Nigeria (north central) | cattle          | no               | 8.0                            | yes       | 13%        | 1.1   |
| Ethiopia (Amhara)       | cattle          | sporadic         | 55.2                           | no        | 44%        | 1.8   |
| Egypt                   | cattle          | yes              | 5.1                            | yes       | 28%        | 1.4   |
| Egypt                   | Buffalos        | no               | 5.1                            | yes       | 37%        | 1.6   |
| Sudan                   | Unknown         | no               | 16.5                           | Unknown   | 37%        | 1.6   |
| Kenya                   | Cattle          | ring vaccination | 31.6                           | yes       | 52%        | 2.1   |


## Summary R<sub>0</sub>

- In 12 out 14 studies  $R_0$  estimate <2 (in fact close to 1)
- High  $R_0$  estimate (3.1) in a targeted study in Eritrea, later estimate after random sampling was lower (1.3)
- High estimate in Kenya, which has a high cattle density
  - Is the NS antibody prevalence related to cattle density?






# Relation cattle density and prevalence in all populations



# Relation cattle density and prevalence in random sampled populations



## Relation of NSP prevalence with density

- Experimental transmission studies in Aujeszky disease show strong relation between  $R_0$  and density (Bouma et al. 1995)
- Limited number of serosurveillance studies seem to confirm the relation between prevalence and cattle density
- Many other studies were performed but not reported, so not yet included





### Final conclusion

FMDV is NOT "highly" contagious, it also depends on the contact structure

In most endemic countries correlation between density and reproduction ratio

NB! Homogenous mixing assumption is probably not valid





